NEUROGENETICS

FALL 2017

Tu and Th, 12:05-12:55 PM, 1441 Genetics/Biotech Center

LEARNING GOALS

Obtain basic understanding of key concepts; acquire public presentation skills; practice critical evaluation of experimental data.

DATE LECTURE/TOPIC

Sep 7 (Th) 1. Course Introduction

Introduction to Genetics

- Sep 12 (Tu) 2. Mendelian Inheritance
- Sep 14 (Th) **3**. Human Pedigree Analysis
- Sep 19 (Tu) 4. Quantitative Genetics I
- Sep 21 (Th) 5. Quantitative Genetics II

Introduction to Neuroscience

Sep 26 (Tu)	6.	Structure and Function of the Nervous System (I)
$C_{op} 29 (Th)$	7	Structure and Eurotian of the Nervous System (II)

- Sep 28 (Th) 7. Structure and Function of the Nervous System (II)
- Oct 3 (Tu) 8. Exam I (in class)

Genetic Analysis of Neurodevelopment in Drosophila

Oct 5 (Th)9.CRISPER-based genome editingOct 10 (Tu)10.CRISPER-based genome editing in Drosophila

Genetic Analysis of Traumatic Brain Injury in Drosophila

- Oct 12 (Th) **11**. Genetic Screen in Drosophila
- Oct 17 (Tu) 12. Genetic Screen in Drosophila to understand traumatic brain injury

Genetic Analysis of Age-Dependent Retinal Pathologies in Mouse

- Oct 19 (Th) 13. Mapping of Risk Alleles
- Oct 24 (Tu) 14. Mapping of Modifiers

Genetic Models of Neurodevelopmental Disorders

- Oct 26 (Th) 15. Using Knockout Mice to Model Rett Syndrome
- Oct 31 (Tu) 16. Using Conditional Knockout Mice to Study Cell Type Specific Contribution to Rett Syndrome
- Nov 2 (Th) **17**. **Exam II**

Tools for Identifying Genetic Variants underlying Neurological Diseases in Human

Nov 7 (Tu) 18.	Genome-wide association studies (array-based)
----------------	---

Nov 9 (Th) **19**. Genome-wide association studies (sequencing-based)

In-class Preparation of Student Presentation

Nov 14 (Tu)	20	Students will be divided into sub-groups. Each group will be assigned one
Nov 16 (Th)	21	research paper for presentation. Students will work together and consult
Nov 21 (Tu)	22	with course director to prepare their presentation in these 3 classes.

Student Presentation of Primary Research Papers

Nov 28 (Tu)	23.	TBA
Nov 30 (Th)	24 .	TBA
Dec 5 (Tu)	25.	TBA
Dec 7 (Th)	26 .	TBA
Dec 12 (Tu)	27	TBA

PREREQUISITE

Either one college-level Genetics course or one college-level Neuroscience course

COURSE WEBSITE

Students can access this syllabus, lecture slides, reading assignments, exam grades and other related materials at the learn@UW course website.

TEXTS

Griffiths, Wessler, Carroll, Doebley (2015) *Introduction to Genetic Analysis, 11th Edition.* WH Freeman and Co. (Recommended)

Bear, Connors, Paradiso (2015) *Neuroscience-Exploring the Brain, 4th Edition*. Wolters Kluwer (Recommended)

The books listed above are on reserve at campus libraries.

Additional reading assignment will include a mixture of primary research papaers and general news and views. For examples, please see the representative list below.

REPRESENTATIVE LIST OF READINGS:

- 1. The failure of the genome. (2011) The Guardian.
- 2. Gene drives spread their wings. (2015) Science.
- 3. Identification of spinal circuits transmitting and gating mechanical pain. (2014) Cell.
- 4. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector *Anopheles gambiae*. (2015) Nature Biotechnology.

EXAMS

Two in-class exams

COURSE DIRECTOR

Prof. Qiang Chang. Rm 657, Waisman Center, 1500 Highland Avenue. Tel: 262-9416. E-mail: <u>qchang@waisman.wisc.edu</u>; Office hours: Mo 4-5 pm or by appointment

GRADING

20% of the class grade is based on classroom participation. Participation grading will follow the guideline (https://kb.wisc.edu/images/group120/24561/GuidelinesforEvaluatingParticipation.pdf). 60% of the class grade is based on performance in the two in-class exam (30% each). 20% of the class grade is based on performance.

Letter grade is assigned as follows: A=85-100%, AB=80-85%, B=65-80%, BC=60-65%, C=50-60%, D=40-50%, F=0-40%.