Zoology 400: General Molecular Biology - Spring, 2017

3 credits Cap: 28 M/W/F 11:00-11:50

Instructor:

Dr. Kurt Amann 121 Zoology Research 265-3150 kjamann@wisc.edu

Office hours:

Tuesdays, 1-2 pm, State Street Chiptole Thursdays, 10:00-11:00 pm, 121 Zoology Research, or by appointment

Required Text:

Lewin's GENES XI. Krebs, et al.

Course description:

This lecture-based course will provide students with a broad understanding of the mechanisms of life at the molecular level. It is intended for intermediate and advanced undergraduates majoring in the biological sciences. The course will cover the structure, chemistry and functions of biological macromolecules, focusing primarily on the ways by which nucleic acids carry out their central roles in cells. Other topics will include the governing principles by which life evolved, functions and is organized; the experimental methods used to study these processes, and the historical context for our understanding of them.

Prerequisites:

Zoology 101/102 or 151/152 or Biocore 383; Chem 103/104 or 109 or 115/116. Chemistry 341 or 343 recommended but not required.

Course outline and dates: (dates to change)

Lecture Date W 1-20 F 1-22 M 1-25 W 1-27 E 1-20	<u>Lectu</u> 1 2 3 4	The chemical nature of the gene Genes encode RNAs and polypeptides Molecular biology methods and genetic engineering Gene, interrupted	<u>Assigned Reading</u> 1-24 26-41 42-79 81-97 100, 117
F 1-29 M 2-1 W 2-3 F 2-5 M 2-8 W 2-10 F 2-12	5 6 7 8 9 10 Exam	What's in a genome? Genes! Genes! Genes! Repeating sequences. Genomes evolve. Chromosomes Chromatin	100-117 120-137 141-160 161-188 192-219 223-260
M 2-15 W 2-17 F 2-19 M 2-22 W 2-24	11 12 13 14 15	Replication and the cell cycle Initiation of replication Nobel Day Replication Extrachromosomal replication	265-282 286-301 primary literature 304-235 328-351

F 2-26 M 2-29 W 3-2 F 3-4 M 3-7 W 3-9 F 3-11	16 17 18 19 20 21 Exam	Nobel Day Recombination DNA repair Nobel Day Transposons and retroviruses Somatic recombination and immune system hypermutation 2	primary literature 354-391 395-420 primary literature 424-456 459-498
M 3-14 W 3-16 F 3-18 March 19-27 M 3-28 W 3-30 F 4-1 M 4-4 W 4-6 F 4-8 M 4-11 W 4-13 F 4-15	22 23 24 25 26 27 28 29 30 31 32 Exam	Prokaryotic Transcription Eukaryotic Transcription Nobel Day Spring Break RNA processing RNA processing Nobel Day mRNA stability and localization Catalytic RNAs Nobel Day Translation Uses of the genetic code	508-544 549-573 primary literature 578-616 578-616 primary literature 622-643 647-667 primary literature 671-708 714-741
M 4-18 W 4-20 F 4-22 M 4-25 W 4-27 F 4-29 M 5-2 W 5-4 F 5-6	33 34 35 36 37 38 39 40 41	The operon Phage Nobel Day Eukaryotic transcriptional regulation Eukaryotic transcriptional regulation Nobel Day Epigenetics Regulatory RNAs Nobel Day	745-773 777-801 primary literature 804-831 804-831 primary literature 838-865 872-888 primary literature

Final Exam: TBA