Microbiology 525 Course Description

The Department of Bacteriology will offer a summer course that is open to any student who has an Intermediate or Advanced Microbiology Laboratory or equivalent Biology Laboratory prerequisite. The course will be Micro525-Advanced Biological Laboratory Practices-A Research Experience. The overall goals of the course are as follows:

- To ensure students get a strong foundation in the theory of those techniques typically used in microbiological and related biological disciplines research
- To ensure students get a strong foundation in the practice of those techniques typically used in microbiological and related biological disciplines research
- To ensure students hone skills of data interpretation and analysis
- Have practice writing a research paper and reading primary literature
- Have practice presenting their work to their peers
- To ensure students get experience in independent research with significant self-direction that includes keeping accurate lab notebooks.
- To ensure students are exposed to research ethics

Syllabus

Week-	Experiment/	Pre-	Lectures/Discussions	Proficiency Tests	Post Lab
Class	Activity	assessment			Assessments
1-1	Basic Lab Skills		Introductions Lab Safety Laboratory Notebooks		
1-2			Research Ethics	Aseptic Technique, Pipetting, media and reagent making, and Dilution Plating Techniques	Quantitative Biology Problem Set
1-3	Protein Purification and enzyme assays	Prelab Quiz	Enzymes and Protein Purification and spectrophotometry		
2-1	SDS-PAGE Gels and enzyme kinetics		Research Ethics	Pipetting and Enzyme Assays	Enzyme Kinetics Graph
2-2	Gene cloning using PCR amplified	Prelab Quiz	Cloning and Molecular Biological Techniques		
2-3	DNA		Research Ethics	Spectro- photometry	
3-1					Cloning Plasmid Map
3-2	Mutagenesis	Prelab Quiz	Genetic Techniques		
3-3	Exp.		Research Ethics		
4-1	Transposon Mutagenesis of Serratia marcescens		Writing a Research Proposal		Mutagenesis Analysis

DRAFT

4-2	Tissue	Prelab Quiz		
4-3	Culture and		Immunology and	Interpreting
	antibodies		Immunodiagnostics	Practical
	Macrophage			Immunology
	Activation			Date
	experiment			Worksheet
	and			
	detection of			
	cytokines			
	with ELISA.			
5-1	Independent		Next Generation	
5-2	Research		Sequencing and	
5-3	Project on		Illumina Technology	
6-1	the			Proposal Draft
6-2	Microbiome			
6-3	of an		Beyond the	
	environment		sequences	
7-1	Summer		Proteomics	
7-2	2017 will be			
7-3	studying the		Metabolomics	Final Proposal
8-1	13-line			11 10
8-2	Ground		Systems Biology	
8-3	Squirrel			Final Poster
	Microbiome			on
	as it relates			Experimental
÷	to			Results
	hibernation			
	biology			

Assignments and Grading

s and Grading
Points
100
20
20
20
20
20
20
100
10
50

Total Points 380 points

Grading Scale

Percentage of Possible Points	l 1	Percentage of Possible Points	Letter Grade
91-100	А	72-78.9	С
89-90.9	AB	60-71.9	D
82-88.9	В	<59.9	F
79-81.9	ВС		

Explanations:

Text/Lab Manual

Instructors in the course will create a lab manual, similar to manuals used in other laboratory courses in the Department of Bacteriology. Students will be required to buy the manual but will be charged a nominal fee to cover the cost of photocopying, typically around \$15.

Didactic Activities

Prior to the beginning of each experiment, students will be introduced to the background material on the techniques and the systems they will use to address a related hypothesis.

At the conclusion of each experiment, we will analyze the data and present the results in the most appropriate format, a graph, a written discussion, etc.

Time will also be set aside to have discussion on Research ethics and writing research proposals and presenting results.

Laboratory Time (described above)

Laboratory Time

Week 1: Basic lab skills, refreshers and important lab skills

Weeks 2-4: Specific experiments will be performed using basic lab skills and techniques common to many biological sciences research.

Weeks 5-8: Students will spend time, in small groups, investigating the microbiome of an environment using Illumina sequencing technology.

Assignments

In addition to proficiency tests to ensure students have competencies in basic lab skills, there will be a variety of small and larger writing assignments. The small assignments will require students to analyze results from experiments. We will also work on writing a research proposal based on the format of National Science Foundation's Graduate Student Fellowships. Students will submit rough drafts so instructors can provide feedback on the intellectual merit of their presentation of the project as well as writing skills. The summer will culminate with a special poster session.